Response Surfaces for Optimal Weight of Cracked Composite Panels: Noise and Accuracy
نویسندگان
چکیده
Two levels of fidelity are used for minimum weight design of a composite bladestiffened panel subject to crack propagation constraints. The low fidelity approach makes use of an equivalent strain constraint calculated by a closed form solution for the stress intensity factor. The high fidelity approach uses the stress intensity factor directly as the constraint and computes it from the stress distribution around the crack. A number of panels were optimized by both approaches for different values of applied load, crack length, and blade height, and response surface approximations for optimal weight as function of these configuration variables were constructed. Computational cost, noise and accuracy for the results are compared. Introduction An important issue in composite panel design for aircraft structures is crack propagation. However, modeling crack propagation in complex structures entails high computational cost, and may not be feasible for design optimization. Vitali et al. used an equivalent strain constraint for designing a composite stiffened panel with a crack. They employed two levels of model fidelity in the optimization. A low fidelity model that did not include the crack was used with a finite element optimization program GENESIS. A model of higher fidelity including the crack used the STAGS finite element program.
منابع مشابه
Vibration Optimization of Fiber-Metal Laminated Composite Shallow Shell Panels Using an Adaptive PSO Algorithm
The paper illustrates the application of a combined adaptive particle swarm optimization (A-PSO) algorithm and the finite strip method (FSM) to the lay-up optimization of symmetrically fiber-metal laminated (FML) composite shallow shell panels for maximizing the fundamental frequency. To improve the speed of the optimization process, adaptive inertia weight was used in the particle swarm optimiz...
متن کاملHigh-velocity impact properties of multi-walled carbon nanotubes/E-glass fiber/epoxy anisogrid composite panels
This work reports the high-velocity impact response of multiscale anisogrid composite (AGC) panels. The aim of the present study is to evaluate the influence of surface-modified multi-walled carbon nanotubes (S-MWCNTs) at different S-MWCNTs contents (0-0.5 wt.% at an interval of 0.1 wt.%) on the high-velocity impact responses of E-glass/epoxy AGC. Surface modification of MWCNTs is confirmed by ...
متن کاملDesigning a prefabricated sandwich composite roofing system Made up of resisting facings and light-weight concrete core with truss-shaped connectors
In this paper, a new roofing system is introduced, which is constructued using the precast composite sandwich panels. This roofing sandwich panels system consists of three kinds of precast concrete sandwich panels including capital panels, beam or between columns panels, and slab or middle panels. The panels are composed of three layers; A high strength reinforced concrete top layer. A thick la...
متن کاملOptimal Design of Sandwich Panels Using Multi-Objective Genetic Algorithm and Finite Element Method
Low weight and high load capacity are remarkable advantages of sandwich panels with corrugated core, which make them more considerable by engineering structure designers. It’s important to consider the limitations such as yielding and buckling as design constraints for optimal design of these panels. In this paper, multi-objective optimization of sandwich panels with corrugated core is carried ...
متن کاملAUTOMOTIVE INTERIOR CABIN NOISE ANALYSIS AND OPTIMIZATION USING SEA AND RSM
In this paper, the acoustic analysis of noise has been done in automotive cabin at high speed. High-frequency noise sources are applied separately to the roof and floor panels as well as to the windshield of the vehicle, which has been investigated at both the driver's and rear passenger's head. The most important panels that have the most noise emission are specified. In order to analyze high ...
متن کامل